Saturday, 7 July 2012

Item 16: Favor composition over inheritance


Inheritance is a powerful way to achieve code reuse. It is safe to use inheritance within a package, where the subclass and the superclass implementations are under the control of the same programmers. It is also safe to use inheritance when extending classes specifically designed and documented for extension (Item 17). Inheriting from ordinary concrete classes across package boundaries, however, is dangerous.

Unlike method invocation, inheritance violates encapsulation.

To make this concrete, let’s suppose we have a program that uses a HashSet. we need to query the HashSet as to how many elements have been added since it was created. To provide this functionality, we write a HashSet variant that keeps count of the number of attempted element insertions and exports an accessor for this count. The HashSet class contains two methods capable of adding elements, add and addAll, so we override
both of these methods:

// Broken - Inappropriate use of inheritance!
public class InstrumentedHashSet<E> extends HashSet<E> {
// The number of attempted element insertions
private int addCount = 0;
public InstrumentedHashSet() {
}
public InstrumentedHashSet(int initCap, float loadFactor) {
super(initCap, loadFactor);
}
@Override public boolean add(E e) {
addCount++;
return super.add(e);
}
@Override public boolean addAll(Collection<? extends E> c) {
addCount += c.size();
return super.addAll(c);
}
public int getAddCount() {
return addCount;
}
}

This class looks reasonable, but it doesn’t work. Suppose we create an instance and add three elements using the addAll method:

InstrumentedHashSet<String> s =
new InstrumentedHashSet<String>();
s.addAll(Arrays.asList("Snap", "Crackle", "Pop"));

We would expect the getAddCount method to return three at this point, but it returns six. What went wrong? Internally, HashSet’s addAll method is implemented on top of its add method, although HashSet, quite reasonably, does not document this implementation detail.

We could “fix” the subclass by eliminating its override of the addAll method. While the resulting class would work, it would depend for its proper function on the fact that HashSet’s addAll method is implemented on top of its add method.

It would be slightly better to override the addAll method to iterate over the specified collection, calling the add method once for each element. This would guarantee the correct result whether or not HashSet’s addAll method were implemented atop its add method, because HashSet’s addAll implementation would no longer be invoked. This technique, however, does not solve all our
problems. It amounts to reimplementing superclass methods that may or may not result in self-use, which is difficult, time-consuming, and error-prone. Additionally, it isn’t always possible, as some methods cannot be implemented without access to private fields inaccessible to the subclass.

If the superclass acquires a new method in a subsequent release and you have the bad luck to have given the subclass a method with the same signature and a different return type, your subclass will no longer compile

Luckily, there is a way to avoid all of the problems described earlier. Instead of extending an existing class, give your new class a private field that references an instance of the existing class. This design is called composition because the existing class becomes a component of the new one. Each instance method in the new class invokes the corresponding method on the contained instance of the existing class and returns the results. This is known as forwarding, and the methods in the new class are known as forwarding methods. The resulting class will be
rock solid, with no dependencies on the implementation details of the existing class. Even adding new methods to the existing class will have no impact on the new class. To make this concrete, here’s a replacement for InstrumentedHashSet that uses the composition-and-forwarding approach. Note that the implementation is broken into two pieces, the class itself and a reusable forwarding class, which contains all of the forwarding methods and nothing else:

// Wrapper class - uses composition in place of inheritance
public class InstrumentedSet<E> extends ForwardingSet<E> {
private int addCount = 0;
public InstrumentedSet(Set<E> s) {
super(s);
}
@Override public boolean add(E e) {
addCount++;
return super.add(e);
}
@Override public boolean addAll(Collection<? extends E> c) {
addCount += c.size();
return super.addAll(c);
}
public int getAddCount() {
return addCount;
}
}
// Reusable forwarding class
public class ForwardingSet<E> implements Set<E> {
private final Set<E> s;
public ForwardingSet(Set<E> s) { this.s = s; }
public void clear() { s.clear(); }
public boolean contains(Object o) { return s.contains(o); }
public boolean isEmpty() { return s.isEmpty(); }
public int size() { return s.size(); }
public Iterator<E> iterator() { return s.iterator(); }
public boolean add(E e) { return s.add(e); }
public boolean remove(Object o) { return s.remove(o); }
public boolean containsAll(Collection<?> c)
{ return s.containsAll(c); }
public boolean addAll(Collection<? extends E> c)
{ return s.addAll(c); }
public boolean removeAll(Collection<?> c)
{ return s.removeAll(c); }
public boolean retainAll(Collection<?> c)
{ return s.retainAll(c); }
public Object[] toArray() { return s.toArray(); }
public <T> T[] toArray(T[] a) { return s.toArray(a); }
@Override public boolean equals(Object o)
{ return s.equals(o); }
@Override public int hashCode() { return s.hashCode(); }
@Override public String toString() { return s.toString(); }
}

The InstrumentedSet class is known as a wrapper class because each InstrumentedSet instance contains (“wraps”) another Set instance. This is also known as the Decorator pattern [Gamma95, p. 175], because the Instrumented- Set class “decorates” a set by adding instrumentation. Sometimes the combination of composition and forwarding is loosely referred to as delegation.
Technically it’s not delegation unless the wrapper object passes itself to the wrapped object.
The disadvantages of wrapper classes are few. One caveat is that wrapper classes are not suited for use in callback frameworks, wherein objects pass selfreferences to other objects for subsequent invocations (“callbacks”). Because a wrapped object doesn’t know of its wrapper, it passes a reference to itself (this) and callbacks elude the wrapper. This is known as the SELF problem.

Inheritance is appropriate only in circumstances where the subclass really is a subtype of the superclass. In other words, a class B should extend a class A only if an “is-a” relationship exists between the two classes. If you are tempted to have a class B extend a class A, ask yourself the question: Is every B really an A? If you cannot truthfully answer yes to this question, B should not extend A. If the answer is no, it is often the case that B should contain a private instance of A and expose a smaller and simpler API: A is not an essential part of B, merely a detail of its implementation.

There are a number of obvious violations of this principle in the Java platform libraries. For example, a stack is not a vector, so Stack should not extend Vector. Similarly, a property list is not a hash table, so Properties should not extend Hashtable. In both cases, composition would have been preferable.

To summarize, inheritance is powerful, but it is problematic because it violates encapsulation. It is appropriate only when a genuine subtype relationship exists between the subclass and the superclass. Even then, inheritance may lead to fragility if the subclass is in a different package from the superclass and the superclass is not designed for inheritance. To avoid this fragility, use composition and forwarding instead of inheritance, especially if an appropriate interface to
implement a wrapper class exists. Not only are wrapper classes more robust than subclasses, they are also more powerful.

Reference: Effective Java 2nd Edition by Joshua Bloch